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INDENTATIONS OF AN ELASTIC LAYER BY
MOVING PUNCHES

C. SVEt
Aerospace Corporation, El Segundo, California

and

L. M. KEERt
The Technological Institute, Northwestern University, Evanston, Illinois

Abstract-A layer in plane strain (or stress) is indented by two frictionless punches of a given profile moving at
a uniform velocity along its surfaces. Symmetry about the midsurface of the layer is preserved and Fourier
transforms are utilized to reduce the problem to the solution of a set of dual integral equations. Standard tech
niques yield a Fredholm integral equation that is solved numerically for parabolic and wedge punches. Results
for the static case are compared with a photoelastic experiment. An analysis including the effects of prestress
is briefly presented.

INTRODUCTION

THE problems to be considered here involve the steady motion of frictionless indenters
on an elastic layer, and all solutions will be appropriate to plane elasticity, Literature on
the general theory and related problems is extensive. E. Yoffe [1] has investigated the
problem of steady motion of a Griffith crack in an elastic material utilizing the method of
Fourier transforms, Sneddon [2] has formulated related dynamic plane elasticity problems
involving steady motion by using a stress function approach involving functions ofcomplex
variables. Radok [3] has applied the same method independently to solve several problems
including that of a parabolic punch moving on a half·plane, The stress functions that
arise from these analyses are solutions to a biharmonic type of equation,

Sneddon and Berry [4] discuss the two approaches to dynamic elasticity problems, i.e,
the complex variable method and the integral transform method. The problem ofa moving
pressure pulse on a half-plane and the problem of a moving dislocation are included as
examples for the complex variable method. A variable pressure applied to a half-plane
is considered using integral transform techniques. All motions are with velocities below
the Rayleigh speed. Cole and Huth [5] have considered the problem of a line load moving
at a steady velocity over a half-plane, where all velocity ranges are considered. Ang [6]
discusses the Rayleigh resonance phenomena by solving the transient problem for the
line load moving with a velocity varying as a step function of time. Payton [7] solves the
transient problem of a suddenly applied line load which then moves with a constant
velocity for all ranges of velocity,

Elastic plate problems have also attracted interest since their solutions have many
practical applications. Fourier integral transform techniques were utilized by Morley [8] to
obtain the steady motion solution for an elastic plate with loads traveling along its surfaces.
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Problems involving semi-infinite solids to which moving pressures are applied have
been considered by Eason [9J and Payton [10]. Eason considers the three-dimensional
steady motion of a pressure distributed over a circular or rectangular area on the surface
of the half-space. Payton has investigated the half-space problem for suddenly applied
point force, which then moves with uniform velocity.

Problems involving prestress have been treated by many authors. Books by Biot [11J
and Green and Adkins [12J summarize elasticity theories that include large initial stresses.
Wright [13,14] has solved certain problems related to the present work based upon
theories developed by Green, Rivlin and Shield [15] and Novozhilov [16] indicating that
several different approaches to the initial stress problem are available. For steady-state
dynamic problems, the equations of equilibrium are similar to those obtained for aniso
tropic elasticity and may be treated as in Green and Zerna [17]. Chen [18, 19J has exploited
this approach for transversely isotropic materials. In a prestressed material the critical
speeds change from that of the unstressed state. Buckens [20J has studied the velocity of
Rayleigh waves in a prestressed semi-infinite medium over a wide range of parameters.

The particular problems to be studied here involve the steady motion of rigid indenters
on an elastic strip. Separately considered are the cases of isolated indenters moving on
an unstressed or prestressed strip.

ANALYSIS
Symmetric case

Stress distributions in an isotropic elastic layer are studied. A fixed coordinate system
(x', y', Zl) is defined as shown in Fig. 1. The equations of two-dimensional elasticity in
terms of these coordinates are used to formulate the problem [8J, and the equations of
equilibrium are given by

(1)

(2)

O' " 0

where (Jx, (Jy, and t xy , are the stress components, t is time, p is the mass density, and u, vare
the displacements in the x', y' directions, respectively. The assumption of small displace
ments and application of Hooke's law yield the following stress displacement equations:

(
au av) au _(au at') at'

(Jx = A ax'+aj +2f.lax" (Jy = A ax'+ ay' +2f.l ay' ,

(
au at')

t xy = f.l ;;-;+~ ,uy (,X

where A. and f.l are Lame's constants and the plate is in plane strain.

y'
ct

~I~\.-...._------------'
FIG. I. Coordinate geometry.
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To solve the governing set of equations, two potentials, <1> and \)I, are introduced
with the displacements given by

(4)

(5)

0<1> 0\)1 0<1> 0\)1
u = ax' + oy" v oy' - ax" (3)

where (1:1, 'P are functions of x', y' and t. Substituting equation (3) into (1) and (2) leads to

2 (02<1> a2
\)1) _ ' 2 (0

2
<1> 02'P)

tJx = AV (1:1+2/1 OX'2 + ox'oy" tJy - ltV <1>+2/1 Oy'2 -ax'oy' ,

!xy = /1(2 ~o~;,' _~2~ +~2~).
ux u} ux uy

The equations of motion (1) reduce to the two wave equations

cfV 2 (1:1 = o2(1:1/ot2, dV2 'P = 02'P/ot2,

where

(6)d = /1/p,
V2 = OZ a2

+ ~ ,z·uy

Rigid indenters are assumed to be moving with constant velocity c along the layer
surfaces in the x' direction. Using the moving coordinate system x, y, z defined as

x = x'-ct, y = y', z = z', (7)

the variable time is eliminated from the analysis. The wave equations become

2oZ(I:I a2 (1:1 2 a2\)I a2\)I
f31-{"X'T+ ~y2 0, f32~+:12 0, (8)

'J u ex uy

where

(9)

Considering an indentation symmetrical with respect to the y axis, the Fourier
transforms [21]

(I}(~, y) = LX) (I:I(x, y)cos«x) dx, qi(~, y) = fox 'P(x, y)sin(~x) dx, (10)

are introduced, whose inverses are

The boundary conditions for the problem to be studied are

tJy = 0, Y = 0, Ixi > I,

!xy = 0, Y = 0, - 00 < x < XJ,

V = w(x), y = 0, Ixl < I,
(I 1)

!xy = V = 0, y= -d, -oo<x<:o,
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(12)

where w(x) is an even function of x, 21 is the punch width, and 2d is the layer thickness.
The boundary conditions imply symmetry about the plane y = -d. The solution to the
governing equations is decomposed into a half-plane solution and an undamaged layer
solution, which is

I JX<1>(x, y) = <1>h(X, y)+~ [A 1(Och(a3 Iy)+ BI(~)sh(a/IY)]CZcos(~x) d~,
1[ 0

lJ''JI(x, y) = 'JIh(x, y)+~ [Az(~)ch(~f3zy)+Bz(~)sh(~fJzY)]CZ sin(~x)d~,
1[ 0

where

ffi() 2(l+fJ~)J'Y-'(J:'fJ' J:)dJ:'Vh x, Y = - ·----R- C;.y ",) e' ,} cos(",x "',
1[Ji 0

(13)

and
(14)

This solution must satisfy boundary conditions (11). The stress boundary conditions on
v = 0 lead to

A
A - ---

Z - 1+fW
B

A ----
I - 1+ f3~'

(15)

where A and B are functions of ~. The boundary conditions on y = - d lead to two
simultaneous equations for the determination of A and B, of which the solution is

where

A(~) = 2f31(l + fJ~)y(~)w(~)/JiRO(~),

B(~) = 4f3lfJz(1 + f3Wy(~)a(~)/JiRO(~),

w(~) = (1 + f3nz e-~fJld Sh(~f31d)-4f31f31 e-~fJ2d sh(~f3ld),

o:(~) = e-~fJ,d Ch(~fJld)-e-~fJ2d ch(~f3ld),

O(~) = (1 + fJ~)l ch(~f31d) sh(~fJ ld) - 4f31f31 sh(~fJ 1d) ch(~f31d).

(16)

(17)

The normal stress and displacement boundary conditions for y = 0 lead to the
following dual integral equations:

IX' r'- I t/J(r)[l- k(r)] cos(rp) dr = g(p),

{XC t/J(r) cos(rp) dr = 0,

0< p < 1,

p > 1,

(18)

k(r) = w(r/l)/Q(r//),

where

p = x/I,

h = d/l,

IJ = y/l, r = ~l,
t/J(r) = ~j31(~.=}ny(r/I),

1[JiRI

g(p) = w(pl)/l.
(19)
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This set of equations is reduced to a single integral equation by selecting a functional
form for t/J(r) that automatically satisfies the second equation [22). Such a form is

'" (r) Lf(t)Jo(rt) dt. (20)

The first integral equation reduces to an Abel integral equation which may be inverted
to give

where

2 d IP ~t
f(p) = -- -d tg'(t)(pZ-tZri: dt+ J f(r)K(r,p)dr,

1t p 0 0
O<p< 1, (21 )

K(r,p) = p {" ekR)Jo(¢r)Jo(¢p) de·

This is a Fredholm integral equation of the second kind since its kernel is of the Hilbert-
Schmidt type [23).

If a parabolic punch is considered, the function g(p) is given by

lpz
g(p) = ') +a, 0 :s::; p :s::; 1, (22)

~r

where a is constant and r is the radius of curvature for the punch. Defining

f(p)

the integral equation becomes

Fz(p) = -p+pf Fz(p) {X ¢kR)Jo(¢r)Jo(¢p)d¢dr.

(23)

(24)

Numerical solution of this integral equation is postponed until later in the paper, but the
expressions for the stresses and displacements are listed here for completeness. The
stresses are

PI(1-/3D II
------erAp, '1) = Fz{t)[A zXI('1, p, /31' t)- A IX 1('1, p, /3z, t)J dt

Jlrl. 0

+f Fz(t) {r [AIGZ(¢,tT)-AzGI(e, tT)]Jo(¢t) cos(¢p) d¢ dt,

/31(1- /3~) II
---erip, tTl = Fz{t)[A l x l ('1, p, /3z, t)- A3x I(tT, p, PI> t)] dt

Ila - 0

I (25)

+ fa Fz(t) fa>") [A3GI(¢,tT)-AIGz(e,tT)]Jo(¢t)cos(¢p)d¢dt,

(l-/3D (I
2~()((1 + /3D TxY(P, '1) = J

o
Fz(t)[xz('1, p, PI' t)-xz('1, p, Pz, t)] dt

+ f Fz(t) {a':) [G4(~''1) G3(~,'1)JJo(¢t)sin(¢p)d~dt.
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The displacements are
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where

(26)

Al = 4f3tf32 , A 2 = (l+f3~)(1+2f3i-f3D,

A 7 = 2, As = (l +f3D, A9 = 2f31fJ2'

GI(~, '1) = [A Ia(~) ch(~f3IIJ) + w(~) sh(WIIJ)]/Q(~),

G2(~' '1) = [A3a(~) ch(~f32'1) + w(~) sh(~f3211 )]/Q(~),

G3(~' '1) = [A Ia(~) sh(~ f311J)+ w(~) chi~f3111)]/Q(~),

G4(~' '1) = [A3a(~) sh(~f321J)+ w(~) ch(~f321J)]/Q(~),

A 3 = (l + f3D 2
,

A lO = (I + f3D,

(27)

and

(28)

(29)

where

j2(X) = [jitT+-1J2/p:----pi)i:,:.-4IJijVp2 + t 2+1J 2f32 - p211,

j2( Y) = [-/(t 2+ '1 ijfi-=pijT+ 4ry2{)2 f~2 _ t2_1J2 f~2 +p2j i,

for IJ < 0, t > 0, () > 0.
Since the displacements (26) are finite for the layer, a relative approach term can be

established. This constant, which was lost by differentiation, can be recovered by direct
evaluation of v at a point, say p = IJ = 0. The vertical displacement under the parabolic
punch is from the first equation (18):

v(O, 0) = a = {'" r-1t{t(r)[l-k(r)] dr.

Using (20) and (23) and by assuming (see equation (63»

(30)

(31 )
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the relative approach becomes

801

(32)

a/a = 100

~-1[1-k(~/h)J()(1+)(3+)(s)(hg)JI(~/h)

-(2)(3 +4)(s)(hg)2J i~/h)+8xs(hj~)3J 3(e/h)] de,

which can be evaluated.
The total resultant load under the punch may also be found by integrating the normal

stress over the surface and then substituting the polynomial for F2 • The resultant load is

After substituting (31) into (33) and integrating, the result is

(33)

P
}lal

(34)

A nondimensional effective stiffness may be defined to provide a measure of the response
of the layer as

K = (P/}lal)j(a/a) = P/}lal. (35)

Numerical values for K are included later.
To obtain the static results, the limit as the velocity approaches zero is taken. This

leads to results which are contained in [24].

Antisymmetric case

If the deformation is assumed to be antisymmetric about the y axis (symmetry is still
assumed about the plane y = - d), the appropriate transforms are

CD(e, y) {OO <D(x, y) sin(ex) dx, ip(~, y) = {OO \}J(x, y) cos(ex) dx. (36)

The integral equations are the same as for the symmetric case with cosRp) replaced by
sin(ep). By choosing

t/JR) = ef f(t)Jo(et) dt,

they reduce to

2 d i P
tg(t) fl fX'f(p) = - d ~(-2--Z-)C dt+ p f(r) OoRr)Jo(ep)k(e) de dr.

1t PoP -t 2 0 0

The profile of the punch is assumed to be that of a wedge, or

(37)

(38)

g(p) = ap/l = ap/2, Ipl ~ 1, (39)

where a/2 is the angle of inclination of the punch profile, and the integral equation becomes

(40)



802 C. SVE and L. M. KEER

where Fz(p) = - .f(p)/rt.. This equation is identical to (24), indicating that the antisymmetric
and the symmetric problems are reduced to the solution of the same integral equation.
However, the displacements and stresses are, of course, not the same. The antisymmetric
case contains stress singularities at p = ± 1, being equal and of opposite signs. Using the
expressIOn

(41)Ipl :s; I
(3(l-!J

Z) flf'uy(p,O)_-l__ L = Fz(t) Uo(~t)sin(~p)d~dt,
f.1Rrt. 0 0

for the normal stress under the punch, the singularities can be isolated and the expression
becomes

(42)
!3 t (l-!JD pFz(l) d fl 2 2"

u.(p,O)---~--= ------i+- (t -p )'q(t)dt.
} f.1Rrt. (l_p2), dp p

where tq(t) = F2(t) and Ipl :s; 1.
Since R is negative, the stress is tensile for p = I and compressive for p = - I. To

cancel the tensile stress singularity and provide a determinate result, the solution for a
flat punch is superposed in such a way as to have zero normal stress at p = I, which is
the leading edge of the punch. For a flat punch the deflection is constant and the dual
integral equations are reduced by considering

t/J(~) = A]o(~) - f .f(t)]o(~t) dt, (43)

which satisfies the second equation automatically. The first integral equation reduces to

O<p<1.

(44)

To determine the constant A, the normal stress for y = °is calculated and the require
ment that the singularities cancel at p = 1 leads to

(45)

The integral equation (44) can now be solved using this relation for A.
Superposition of the two problems leads to the following expressions for the stresses

and displacements:

(31Q~}lux(p,YJ) = F2(l)[A 2x t(1], p, {3t, 1)-A tx t(1], p, {3z, 1)J
f.1rt.

-f {AJF1(t)x t(1],p,{3t, t)+F2(t)Xt(1],P, {3t, t)J

-A l [Ft(t)x t (1], p, {32' t)+F2(t)xtl1], p, (3z, t)]} dt (46)

+F2(l) f: [AtG2(~,1])-A2Gt(~,1])]]o(~)cos(~p)d~

+ f IO [A2Gt(~,1])-AtG2(~,1])J[Ft(t)cos(~p)+Fz(t)~ sin(~p)J

x] o(~t) d~ dt,
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(47)

(49)

/31(l-/3~)(Jy(p,ry) = Fz(1)[A 1Xl(ry,P,/3z, 1)-A3x 1(ry,P,f31' 1)]
f1CX

+ { {A 3[F1(t)X 1(ry, p, /31 ,t)+F2(t)Xl(ry, p, /31' t)J

-A 1[F1(t)X 1(ry, p, /32' t)+F2(t)Xl(ry, p, /32' t)]} dt

+F2(1) f: [A 3Gd~, IJ) - A 1GZ(~' ry)JJ O(~) CoS(~p) d~

+ {{': [A1G2(~'1J)-A3Gl(~'IJ)J[F1(t)cos(~p)+F2(tRsin(~p)]

X J O(~t) d~ dt,

(1- /3D
2(1 + /3Dwx 'XY(p, ry) = F2(1)[x2(1J, p, /31' 1) - X2(1J, p, /32' 1)J

+ {{F1(t)[X2(IJ,P,/32,t)-X2(ry,P,/31,t)J-F2(thz{ry,P,/32,t)

(48)

- X2(1J, p, /31' t)]} dt + F2(1) L'" [G4(~' ry) - G3(~' IJ)]J0(0 sin(~p) d~

+f 1'" [G3(~' 1J)-G4(~' IJ)][F1(t) sin(~p)-F2(t)~ cos(~p)]

X Jo(~t) d~ dt,

/3 (1 - /32) fOO
1 2 u(p, ry) = F2(l) [G5(~' 1J)-A10G1(~'1J)+A9G2(~'IJ)]C lJO(~) sin(~p)d~

(X 0

- {{" [G5(~,IJ)-AlOG1(~,IJ)+A9G2(~,IJ)J

X [F1(t) sin(~p) - F2(tR cos(~p)]C 1J o(~t) d~ dt,

(1- /3D foc
--v(p, IJ) = F2(l) [G6(~' 1J)-A7G4(~'1J)+A8G3(~'IJ)J

(X 0

xC1Jo(~)cos(~p)d~- {LOC

[G6(~,IJ)-A7G4(~,IJ)+A8G3(~,IJ)J (50)

X [F1(t) cos(~p) + F2(t)~ sin(~p)J~ - 1J o(~t) d~ dt,
where

[
-Ipl (X3- 3X y2) -1J/3(3X2Y - Y3)J

Xl(Y/,P,/3,t) = (X3_3XyZ)2+(3X2y_y3)2 sgn(p),

-Y//3(X3-3Xy2)+[pl(3X2y- y3)
X2(1J, p, /3, t) = (X3 _ 3X y2)2 +(3X2 Y _ y3)2 '

for y/ < 0, t > 0, /3 > 0.

(51)
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The relative approach for the wedge problem is found by considering the normal
displacement for p = IJ = 0, which is

v(O, 0) = w.

Introducing (see equation (67))

F 1(p) = C\p+C3p3+Csp S,

the relative approach becomes

w/al = LX; C 1[1 -k(~)][F2(l)J o(~/h)+ (C 1 +C3 +Cs)(h/~)J 1(~/h)

- (2C 3 +4CS)(h/~)2J 2(~/h) +8Cs(hl~)3J 3(~/h)] d~.

The resultant normal load is given by

which becomes
P nR

p~al = ifiJl=-#~)[Cl +C3 /2+C s/3-2F2(1)],

and the dimensionless ratio is

For the wedge problem a moment resultant may be calculated by using

M = f...1 X(Jy(x, 0) dx.
·1

This expression leads to

/l~2 = 27i~{i~-#D( Xl +X1+Y~s),
and if 15 = a/I = a/2 is the angle of the wedge

M nR ( X 3 x s)
KM = 2/l15 212 = ~P;(1-#D Xl +2~+3 .

NUMERICAL RESULTS

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

Solution of Fredholm integral equation

In order to obtain numerical values for the displacements and stresses the governing
integral equations must be solved. Consider first the problem of parabolic punches moving
across an unstressed layer and rewrite equation (24) as

8(p)+h(p) = f 8(r)K(p,r)dr, 0< p < 1, (61)
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where

and

h(p) = f rK(p, r) dr,

K(p, r) = p {'" ~k(~)Jo(~r)Jo(~p) d~.

This integral equation may be solved either asymptotically by expanding in powers of l/h
for h = d/l ~ 1 or numerically by representing the integral equation as a finite set of
simultaneous algebraic equations in the form

N

(J(Pi) +h(Pi) = L (Pk - Pk- l)K(p;, rk)(J(rk),
k= 1

i = 1,2, ... ,N. (62)

The set of N equations can be solved and the function (J(p) determined at discrete points.
In this case it is possible to represent F2(p) as a polynomial of the form

F2(p) = XIP+ X3p 3+xsps. (63)

Table 1 contains values for the coefficients of F2(p) for various choices of c/cz and h. A
value of 0·3 is chosen for Poisson's ratio. To indicate the behavior of the solution for
increasing velocity, Fig. 2 is included. It is observed that for slow velocities the solution
to the integral equation is essentially equal to the half-plane solution provided the layer is
not too thin. However, the stresses do not exhibit this behavior and are more sensitive to
the layer thickness. The stresses approach the half-plane solution for relatively thick
layers, i.e. h > 10.

Computation ofstresses

With the solution to the integral equation available, expressions for the stresses may
be evaluated by numerical integration. Simpson's one-third rule is utilized to convert the
integrals into summations and convergence is accomplished by using several test cases
and comparing results. To increase the speed of convergence, the expressions are decom
posed into a half-plane part and a layer part and the infinite integrals in the half-plane are
evaluated analytically. The stresses are combined to provide the maximum shear stress
and contour plots are developed so that comparisons may be made with photoelastic

TABLE I. F1 FOR I' = 0·3

e/e 2 h XI X 3 K S

0·2 I -1,5505 2'5609£-1 -4'7679£-2
0·5 1 -1,7123 3'7258£-1 -7'3941£-2
0·8 1 - 2·7587 ]·2692 -2·9127E-1
0·2 4 -1,0342 1·6487E-3 -4·6713E-5
0·5 4 -1,0440 2'S704E-3 -8·2070E-S
0·8 4 -1,1043 1'1204E-2 -5'7218E-4
0·2 10 -1'OOS4 4'3317E-S -3'5063E-7
0·5 10 -1,0070 6'7788E-S -S·6223E-7
0·8 10 -1,0162 2·9057E-4 -8·6676E-7



806 C. SVE and L. M. KITR

-2.0,------
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P

10

FIG. 2. Integral equation solution for parabolic punch for h = I and e!e 1 = 0,2,0'5,0,8.

results. Points of maximum shear stress are easily located by examining the results and
the dependence upon the velocity of the punches and thickness of the layer is readily
established.

Isochromatic lines for the parabolic punch problem are shown in Fig. 3 for the half
plane and in Fig. 4 for h = 4. The dynamic solution appears to be very close to the static
solution until the velocity ratio exceeds 0'5 and approaches the Rayleigh wave velocity,
which is 0'9274c2 for v = 0·3. At this velocity a resonance phenomenon occurs and the
steady velocity solution no longer exists. The authors note that for the half-plane the
normal stress becomes zero, and as the velocity increases the normal stress becomes
tension; it appears that no physically reasonable steady solution exists for the contact

FIG. 3. Parabolic punch isochromatics (lO'!Jia) for half-plane and e!e 2 = 0·2.0·5.0·8.



Indentations of an elastic layer by moving punches 807

2

FIG. 4. Parabolic punch isochromatics (IOrlllil:) for h = 4 and ele 2 = 0,2,0,5.0,8.

problem for Cs:s; c:S; cz , where Cs is the Rayleigh wave speed [25J, [26]. For velocities
greater than that of shear waves, one or both of the governing equations becomes hyper
bolic and the nature of the solution changes.

(65)

(64)

0< p < 1,

0< p < 1,

Wedge problem

The wedge problem is composed of two; they are an antisymmetric and a flat punch
solution suitably superposed to give zero stress at the leading edge, p = I. This scheme
leads to integral equations (40) and (44) which may be rewritten as

F1(p)+h 1(p) = LF1(r)K(p,r)dr,

O(p) +hz(p) = LO(r)K(p, r) dr,

where

hz(p) = LrK(p, r) dr,

K(p, r) = p fC ~k(~)Jo(~r)Jo(~p) d~, and O(p) = Fz(p) +p.

(66)

The solution Fz(p) is available in Table 1, and the integral equation for F 1 is solved in the
same manner with results in Table 2, where

O<p<1. (67)

Proceeding as in the previous case, the expressions for the stresses are decomposed
into half-plane and layer portions to increase convergence and are then evaluated numeri
cally. As before, the infinite half-plane integrals can be found in closed form leaving only
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TABLE 2. F1 FOR v = (n

e/e2 h C1 C3 C 5

0·2 I 2·0133 --1,3227 3'589IE-I
0·5 I H839 -2'1966 6'552IE-1
0·8 I 10·820 -11'40 4·7461
0·2 4 n280E-2 - H025E-3 1'042IE-4
0·5 4 9'4364E-2 - 5'7344E-3 1'9454E-4
0·8 4 HI09E-I -2'7265E-2 IA545E-3
0·2 10 1'0960E-2 -8·7597E-5 4'1958E-7
0·5 10 IAI03E-2 -1'3753E-4 n632E-7
0·8 10 3'3 I67E-2 -6'0450E-4 5'4527E-6

the rapidly convergent layer integrals for numerical evaluation. Figures 5 and 6 illustrate
the isochromatics for h = 4. The results are asymmetric about the y axis due to the super
position of the two cases. A singular stress exists at p = -1, which is the trailing edge of
the punch so the fringes become dense as this point is approached.

To include the effects of prestress the equations from the Appendix are used. The
determination of VI and Vz is accomplished by solving a quadratic equation (75) for given
isotropic material properties, prestress, and punch velocity. The solutions to the integral
equations for the two cases may be developed with the roots of the quadratic now avail
able. The weighting function k(~) = w(~)/n(~) has to be redefined using (81). To indicate
the effect of prestress on the integral equation solution Fz(p), Fig. 7 is included for c/cz = 0·8
and h = 1. The solution for the integral equation approaches the half-plane solution for
increasing prestress.

Isochromatics for the prestressed cases may be developed using the solutions to the
integral equations and numerical integration of the expressions derived in the Appendix.
Figure 8 indicates the behavior of the isochromatics for h = 4, P/ f1 = 0,4, and r:t. = 0·1.
Comparing these curves with the unstressed case shows that prestress alters the results in
several ways. The values of the fringes are increased since a uniform stress is added to (Yx'

.5. .7 .8 .8 .7 .6.5

FIG. 5. Wedge punch isochromatics (r/wx) for h = 4 and e/e2 = 0·5.
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.7.8 .9 .9 .8.7

FIG. 6. Wedge punch isochromatics (r!lllX) for h = 4 and e!e, = 0·8.
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The other terms in the equations tend to change the shape of the curves, but one of the
major effects of prestress is to increase the Rayleigh wave speed. This means that the
velocity at which resonance occurs must be increased. Buckens [20J has discussed this
problem.

Expressions were developed to obtain the relative approach term for the unstressed
case, and thereby the solution is complete. Curves are computed for K to illustrate the
response for various values of layer thickness and punch velocity. Figure 9 gives results
for the parabolic punch problem for v 0·3 and no prestress. Increasing the layer thick
ness or punch velocity decreases the stiffness of the layer. For a half-plane or a punch
moving at the velocity of Rayleigh waves, K = 0, which means the effective resistance to
the load has disappeared.

-2.0....--------------------,

-1.5

F2 lpl
-1.0

-0.5

0.5

P

1.0

FIG. 7. Integral equation solution for parabolic punch for h = I, ele2 = 0·8 and Pill = 0'0.0-4.
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FIG. 8. Parabolic punch isochromatics (I0r!tl) for h = 4, Pill = 0'4, ()( = 0,1, and e!el 0·2.0·8.

To obtain a qualitative verification of the results a photoelastic experiment was con
ducted for the static case. Isochromatics were obtained and are shown in Figs. 10 and 11
for the case of parabolic punches indenting a layer which was unstressed in the first case
and prestressed with (Jxl/-1/:1. = O' 552 in the second case. The same isochromatics were
computed using the theoretical expressions for v = O'465,,u = 151 psi,h = 7'5, and a = T\-'

1.0

·----l
I

0.5

C/c 2
FIG. 9. Effective stiffness vs. velocity for parabolic punch case.

o

1.0

4.0

3.0

2.0p- _

K



FIG. 10. Theoretical and experimental results for parabolic punch isochromatics.

ladll!: p. 810



Flo. II. Thcoretical and expcrimental results for parabolil: pund, isochromatks induding
prestress.
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and have been superposed on the figures to indicate the degree of agreement. The half
plane results were also computed for this case and it was found that the layer solution
increased the fringe order by approximately one. Near the center of the layer (y = -d),
however, the fringe pattern, as well as the order, was altered as can be seen in Figs. 3 and 4
for a similar case. Additional computations were made for various values of h and it was
concluded that for h > 10, the stress distribution could be adequately predicted with a
half-plane solution.

SUMMARY

Several problems appropriate to the geometry of a layer have been studied. For
indentation problems, dual integral equations arise which may be solved by analytical,
numerical or asymptotic methods, depending upon the final results desired and the relative
difficulty involved. The examples studied utilize a numerical method for the solution of
the integral equation since the final results were to be the isochromatics in the interior of
the layer. The expressions for these stresses contain integrals that had to be computed
numerically so an asymptotic scheme would not be especially helpful.

Examination of the figures indicates that the solution is approximately given by the
static solution until c > O·5cz. The thickness of the layer influences the solution to the
integral equations, e.g. when d < 4/, otherwise the half-plane solution is sufficient, ap
proximately. However, the stress distribution within the layer is more sensitive to the
layer thickness since the half-plane solution is approximately valid only when d > lOt.
The response in a global sense may be obtained from Fig. 9. The curves are flat for c < O'5cz
but are rapidly changing in the region O'5cz < c < Cs as the resonance point is approached.
Also, as the layer thickness decreases, K increases and in the limit becomes infinite.

The authors note that in a recent paper, Wang, [27] has solved similar dual integral
equations that possess a different weight function. In his solution method the dual integral
equations are reduced to a Fredholm integral equation of the first kind, rather than of
the second kind as in the present development.
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APPENDIX. INDENTAnONS OF A PRESTRESSED LAYER

Symmetric case

The equilibrium equations in terms of incremental stresses sx' Sy, Sxy, are [l1J

(68)

where u and v are displacements in the x' and y' directions, respectively, and w denotes
the rotation,

au iJu
2w = ----

iJx' (ly'
(69)

The prestress terms Sx and Sy act along the x' and y' axes, respectively. Assuming the layer
is prestressed only in the x' direction, Sy = 0 and Sx = P. The material is chosen to be
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orthotropic and the incremental displacements are assumed small leading to the linear
relations

(70)

(ov au)
Sxy = 2Qexy = Q ax' +oy' .

The existence of a strain energy function implies the following relationship between the
material constants:

B21 -B12 = Sx-Sy = P. (71)

For uniform motion with velocity e along the x' axis, the steady motion transforma-
tion x = x' - et, Y = y', Z z!, is used to eliminate time from the equations.

The potential cp(x, y) is introduced [18J, with the displacements defined by

olf> ocp
u = ax' v = k oy' (72)

where k is a constant. Substituting equation (72) into the governing equations leads to

(73)

For equation (73) to have a nontrivial solution they must be identical, which gives a
relation in terms of a constant v,

_ ( Q+~2 -pe2)k+B21 +Q-~2Bll _pe2

v = ---::=---,-----:::;-
p ( P) - kBnQ-2"+k B12 +Q+2"

Eliminating k, equation (74) may be rewritten as

V
2
B22 ( Q-f) -{BdBll - pe2)+ (Q+f- PC2 )(Q-f) -(B l2 +Q+f) 2J

+ (Q+f-pe2)(Bll-PC2) = o.

(74)

(75)

Equation (75) contains two roots VI and V2 which are assumed to be unequal and to
have positive real parts (see [18J and [19J). For each root there is a corresponding value
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of k given by equation (74) and they are designated k l and k2. Such a designation leads to
two potential functions CfJI and CfJ2, with the displacements becoming

(76)

As in the previous case, the solution for the layer is decomposed into a half-plane solution
and a portion for the undamaged layer.

The boundary conditions are

Sy = 0,

SXy-PeXY = 0,

l' = w(x),

v = 0,

It follows that the solution has the form

Ixl > I,

Ixl < I,

-Y.; < x < x',

-Y.; < x < 'Y':,

y = 0,

y = 0,

y = 0,

y = -d,

y = -d.

(77)

CfJI (x, y) = CfJlh(x, y) +~ f' [A 1(0 ch(~j;~y)+ BI(~) sh(~j~~;y)]C 2 cos(~x) d~,
IT 0

CfJ2(X, y) = CfJ2h(X, y) +2f x [A2(~) ch(~jv~y)+ B2(~) sh(~j;;y)]C 2 cos(~x) d~.
IT 0

Substituting equations (78) into the stress boundary conditions for y = 0 leads to

(78)

B
B I = ----;=--,

..J vdl +kd

A
A I = ~--------------- ,

B22kIVI-BI2-P

where A and Bare

-B
B2 =---~_. -----,

v/V2(l + k2 )

-A
A

2
= ------------ ----------,

B22k21'2- B I2- P

(79)

A(O = J~;ll'~(l +ktl(l +k2)(B22k21'2 -B 12 -P)

x (B 22 k I v I - B 12 - P)a(~)r(~)/Rn(~),

B(~) = J~~(l +ktl(l +k2)W(~h'(~)/Rn(~),

and

R = J~(l +k2)(B22k l VI - B12 - P)-..J/~I-(l +ktl(B22k2v2- B I2 - P),

a(O = e-~~V;-d ch(~~d)-e-~VV;d ch(~~d),

w(~) = ~(l +k2)(B22k l VI - B I2 -P) e<~~d sh(~J-I~d)

- ~(l + ktl(B22k2V2 - B I2 -P) e-Uv;d sh(~J~~d),

n(~) = J~(l + k2)(B22k l VI - B I2 -P) sh(~j;~d)ch(~~ld)
r- r ---- .--

-..J 1'1(1 + k tl(B22k21'2 - B I2 - P) sh(~..J VI d) ch(~vl v2d).

(80)

(81 )
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To satisfy the displacement condition on y = 0 and the requirement of vanishing normal
stress for Ixl > I, dual integral equations arise which become identical to equation (24)
except for k(e) = wW/Q(e), which is defined as above.

This Fredholm integral equation of the second kind may be solved using numerical
or iterative methods. F2(p) may be represented by a polynomial and the stresses may be
obtained by evaluating the following expressions:

'xy = Sxy+Pw,

which lead to

0;~-~-~(k2 -k1 ) f.1 C C
--'------=----=------:=--------=--a)p, '1) = F2(t)[A 2K 1('1, p, V VI' t) - A4 K I ('1, p, V V2, tJ dt

Ct. a

+ f F2(t) {" [A 4 Gie, '1)-A 2G I (e, '1)JJo(W

P
x cos(ep)de dt+~(k2-k1 )-,

rx

JVlv 2(k 2 -k l ) f.1 C r
-'--------aip, '1) = F2(t)[A 1x l ('1, p, V v2, t)-A 3 x l ('1, p, V VI> t) dt

rx 0

+ LF2(t)100

[A 3 GI(e,'1)-A I G2(e, '1)JJo(et) cos(ep) de dt,

(k
2
:k

d
'Xy(p, '1) = (Q-f)(l +kd(l +k2)LF2(t)[X 2('1, p, j;;, t)

-x2('1,P,F,t)Jdt+P f FAt)[A sx 2('1,pj;;,t)

-A7 x 2('1,p,F,t)Jdt+ LF2(tfo
OO

[A S G4 (e, '1)

- A 6 G3(e, '1)JJo(et} sin(ep) de dt.

The displacements are

~(k2-kdu(p,'1)/rx= f F2(t)100

[Gs(e,'1)-A loGI (e,'1)

+ A 9 G2(e, '1)JC I Jo(et) sin(ep) de dt,

(k 2-kdv(p, '1}/rx = LF2(t)100

[G 6 (e, '1)-A 7 G4 (e, '1)

+ A SG3(e, '1)JC I J o(et} cos(ep) de dt,

(82)

(83)

(84)
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A j = Jv~(l +k j)(B22k21'2 -B j2 -P),

A2 = ~(I+k2)(Bll-Bj2kjvd,

A 3 = fi;(l +k2)(B22kjvj-Bj2-P),

A4 = ~(l +kj)(B ll -B t2 k2v2), (85 )

A 7 = k2(l +kd, As = kdl +k2),

A 9 = ~~(l +k t ), AtO = v2(l +k 2 ),

and the definitions for the functions G; are given by equations (27) with fi j and fi 2 replaced
by~ and ,,(;;, respectively.

For the case of zero prestress and isotropic material properties,

(86)

which leads to

At = 4fJt/l, A2 = /l(l +fJD(1 +2fif-finffJ2'

A3 = /l(l +fJ~)2IfJ2' A 4 = 4fi j/l, As = A 6 = 2/l(l +fJDlfJ~·

A 7 = 21fJL A8 = (l + fJ~)/m,

A9 =2fJl' A to =(1+fJDlfJ2'

(87)

The wedge punch case including prestress presents no new difficulties and is not investigated
here.

(Received 18 September 1968; reDised 19 December 1968)

A6cTpaKT-PaCCMaTplmaeTClI 3aAa'la CJlOll B nJlOCKOH Ae<!>opMaUHH /HJlH HanplllKeHHlIxi, nOABepralOluero

npOTlIlKKe 6e3 TpeHHlI MelKAY ABYMII lllTaMnaMH 3aAaHHoro npo<!>HJlll. CJlOH ,l1BHlKeTClI C nOCTOllHHOH

CKOPOCTblO B,l10Jlb noaepXHOCTeH lllTaMnOB. CoxpaHlIeTClI CHMMeTpHlI BOKpYlI Cepe,l1HHHOH IlOBepXHOCTH

CJlOll. J1cnOJlb3YIOTClI TpaHc<!>opMaUHH 4>ypbe ,l1Jlll CBe,l1eHHlI 3a,l1a'lH K pellleHHIO CHCTeMbI IlapHbIX HHTerpa

JlbHbIX ypaBHeHHH. CTaH,l1apTHOH MeTO ,ll,llaeT HHTerpa,l1bHOe ypaBHeHHe 4>pe,l1rOJlbMa, pelllaeMoe 'lHCJleHHO

,l1Jlll napa60JlH'leCKOrO H KJlHHO-o6pa3Horo IllTaMnOB. CpaBHHBalOTClI CTaTH'leCKHe pe3YJlbTaTbI C <!>OToynp

yrHM 3KcnepHMeHTOM. ITpe,l1CTaBJllleTClI KpaTKO aHaJlH3, Y'lHTbIBalOll\HH 3<!><l>eKT npeABapHTeJlbHbjX

HanplllKeHHH.


